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1. INTRODUCTION
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The simple logistic model states that these responses depend on the predictor variable as 

follows,  
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For logistic regression, AIC is adapted as follows: 
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The R step() procedure was used to compare models in a backward and forward 

stepwise fashion, which combines forward selection and backward elimination to decide 
which variables to include or remove from the model, based on their effects on AIC, as 
defined in (11). 
 
2.3  GRADIENT BOOSTING  
 
2.3.1  Regression Trees, overview   
 

A description of the gradient boosting machine procedure in R, gbm(), should begin 
with a discussion of regression trees, which are described by Hastie et al. (2008). 

Consider a model with a response variable Y, and two predictor variables X1 and X2. The 
feature space of X1 and X2, i.e., all combinations of values of each that can be used to predict 
the response,  is first split into two partitions at a point X1=t1 (Figure 1a), and the response is 
modeled by the mean of each partition, with the variable X1 and split point t1 chosen to 
achieve the best fit. (This process will be explained in greater detail below.) The resulting 
partitions, or nodes, are split at similarly chosen points until some stopping criterion is met, 
typically the minimum number of elements remaining within a partition, which is commonly 
referred to as minimum node size. In Figure 1a, the region of X1 < t1 is split next, at X2 = t2, 
using the same procedure to achieve the best fit within the region X1 < t1. Two more splits, 
t3 and t4 are made in the same manner before the procedure is stopped. The decision tree in 
Figure 1b represents the same information. 

 

 
 

Figure 1a. Figure 1b. Figure 1c. 
Figures from Hastie et al. (2008) 
 

Figure 1c shows the partitioned feature space, with the prediction surface fitted by the 
regression model 
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2.3.1  Regression Trees, detail 
 

The estimated responses, cm, are obtained using sum of squares 
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To find 

€ 

Tα , weakest-link pruning successively collapses the internal node that produces 
the smallest increase in  
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This continues until a single node is left, resulting in a sequence of subtrees of T. Among 

those subtrees will be 

€ 

Tα , the one that minimizes (14). A value for α is estimated using cross-
validation, choosing 

€ 

Ù α  to minimize the cross-validated sum of squares, which results in the 
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1. Calculate the negative gradient: 
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2. Randomly select pxN cases, the subset to be used for the training set, from the dataset.   

 
3. Fit a regression tree with K terminal nodes, using only the observations randomly selected 
for this iteration. 
 
4. Compute predictions, ρ1, … , ρk: 
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of six different measures of graduation and retention. This amounted to 96 one-way 
interaction models of potential interest.  

Of models that used interactions between preparedness or GPA and different measures 
of financial aid to predict graduation within six years, the model that I report in Table 1 had 
the lowest AIC. Average annual scholarship amount is a quantitative variable with values 
ranging from nothing to well above $20,000.  
 
 

Coefficient Estimate P-value 
Prepped(Prepared) -0.743 < 2*10^-16 
Prepped(Unprepared_English) -1.060 < 2*10^-16 
Prepped(Unprepared_math) -0.989 < 2*10^-16 
Prepped(Unprepared) -1.496 < 2*10^-16 
Ave. Scholarship 0.0002456 < 2*10^-16 
Prepped(Unprepared_English)*Ave. 
Scholarship -0.000109 0.0086 

Prepped(Unprepared_math)*Ave. 
Scholarship -0.0000733 0.0164 

Prepped(Unprepared)*Ave. Scholarship -0.000216 1.03*10^-15 

 
Table 1. Significant parameter estimates with P-values for the lowest-AIC model predicting 
graduation within six years. 
 

A number of interesting inferences can be drawn from this fitted model. For example, 
the model predicts that when scholarship support is zero, all categories of preparedness are 
associated with predicted probabilities of graduation that fall below 5.0ˆ =ip ,!!These can be 
found by using (2) with each individual estimate of the categories of the prepared variable. 

While increasing average annual scholarship support is associated with increased 
probability of graduation, that effect varied for the different categories, hence the interaction 
terms. Table 1 shows that the most negative interaction term estimate is for students who 
are unprepared in both math and English. The next most negative is for students unprepared 
in English, followed by students unprepared in math. This is illustrated in figure 2, where we 
see that for the least prepared students, increasing levels of scholarship support are 
associated with a modest increase in probability of graduation, followed by a larger increase 
for those unprepared in English, then those unprepared in math. The ‘prepared’ category, 
the baseline against which the other categories are compared, is associated with the highest 
intercept, as well as the greatest increase in probability of graduation with increasing levels of 
scholarship support.  
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Figure 4. Percentage correct predictions vs. percentage missing data, logistic regression vs. 
gradient boosting, simulated data. 
 

That logistic regression was able to slig
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3.3  LOGISTIC REGRESSION VS. GRADIENT BOOSTING, REAL DATA 
 
The result of the comparison of performance on data with missing values is of particular 

concern for fitting predictive models for UA student data. The UA student body has an 
average age of approximately 30 (UA in Review 2011), and older students are more likely to 
be missing data values. The average age of students in the data set with 'NA' for high school 
gpa was 25.4. The average age of students who had a non-'NA' value for gpa was 19.7. It 
therefore should not be surprising that 26.3 percent of the sample records are missing values 
for high school GPA, one of the most important predictors of graduation. 

I carried out a preliminary comparison using gender, Pell grant status, preparedness, UA 
Grant status, high school gpa, average annual scholarship support, the interaction between 
gpa and scholarship support and the interaction between preparedness and scholarship 
support to predict graduation within six years. I used forward and backward stepwise model 
selection based on Akaike Information Criterion (R function step()) to improve the logistic 
regression model, and allowed the gradient boosting machine to use an interaction depth of 



! $&!



! $'!

Partial dependence plots show a variable's effect on the gradient boosting model after 
the mean effects of all other variables in the model have been accounted for. Figures 6a and 
6b show the partial dependence plots for the variables in the fitted gbm model. The 
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us to identify successful and unsuccessful, and potentially wasteful, efforts to improve 
student success. It would also be beneficial to be able to use current data to predict the 
probability that UA students will be successful, and so identify those most (and least) in need 
of assistance. UA student data can be problematic. Particularly troublesome is the fact that 
high school grade point average, a powerful predictor of student success, is missing from 
large numbers of student records, especially those of the many older, non-traditional 
students. This study demonstrated that gradient boosting, which markedly outperformed 
logistic regression in predicting student success when data were missing, has the potential to 
be a useful tool in attempting to deal with these challenges. This suggests the benefits of 
further investigation of gradient boosting techniques, especially in the area of model 
interpretation. 
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5. APPENDIX 
 
5.1. R code to simulate data. 
 

N<-2000 
alpha<-0.34; B1 <- 1.45; B2 <- -2.44; 
prob<- function(alpha, B1, B2, X1, X2) {  

(exp(alpha+B1*X1 +B2*X2))/(1+exp(alpha+B1*X1 +B2*X2)) 
   } 
X1<- runif(N, min=-1, max=1)*5 
X2<- runif(N, min=-1, max=1)*10 
p<- prob(alpha, B1, B2, X1, X2) 
YY<- rbinom(N,1,p) 
data<-data.frame(y=YY, x1=X1, x2= X2, p=p) 

 
The function prob() returns a probability (p) from the logistic response function (7). 
 
YY<
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